Toward Standardized Near-Data Processing with Unrestricted
Data Placement for GPUs

Gwangsun Kim
Arm
gwangsun.kim@arm.com

Mike O’Connor
NVIDIA and UT-Austin
moconnor@nvidia.com

ABSTRACT

3D-stacked memory devices with processing logic can help alleviate
the memory bandwidth bottleneck in GPUs. However, in order
for such Near-Data Processing (NDP) memory stacks to be used
for different GPU architectures, it is desirable to standardize the
NDP architecture. Our proposal enables this standardization by
allowing data to be spread across multiple memory stacks as is
the norm in high-performance systems without an MMU on the
NDP stack. The keys to this architecture are the ability to move
data between memory stacks as required for computation, and a
partitioned execution mechanism that offloads memory-intensive
application segments onto the NDP stack and decouples address
translation from DRAM accesses. By enhancing this system with a
smart offload selection mechanism that is cognizant of the compute
capability of the NDP and cache locality on the host processor,
system performance and energy are improved by up to 66.8% and
37.6%, respectively.

CCS CONCEPTS

« Computer systems organization — Single instruction, mul-
tiple data; Multicore architectures; - Hardware — Emerging
architectures;

KEYWORDS

Near-data processing; 3D-stacked memory; GPU computing

ACM Reference Format:

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh.
2017. Toward Standardized Near-Data Processing with Unrestricted Data
Placement for GPUs. In Proceedings of SC17, Denver, CO, USA, November
12-17, 2017, 12 pages.

https://doi.org/10.1145/3126908.3126965

1 INTRODUCTION

Memory bandwidth has long been one of the most critical bottle-
necks [11] and 3D-stacked memory devices such as the Hybrid

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC17, November 12-17, 2017, Denver, CO, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5114-0/17/11...$15.00
https://doi.org/10.1145/3126908.3126965

Niladrish Chatterjee
NVIDIA
nchatterjee@nvidia.com

Kevin Hsieh
Carnegie Mellon University
kevinhsieh@cmu.edu

Memory Cube (HMC) [2] have been proposed as an alternative
to conventional DDR and GDDR memory devices to overcome
the bandwidth and energy limitations. However, while the HMC
provides a large amount of DRAM bandwidth available through
high-speed link interfaces, the GPU off-chip bandwidth is funda-
mentally limited and becomes a bottleneck for memory-intensive
workloads. Especially as modern data center servers require several
hundreds of GBs of memory capacity per node [42], a number of
memory stacks are needed and the aggregate DRAM bandwidth
available from them cannot be fully utilized by the GPU alone.

For example, to provide 128 GB memory, 16 HMCs are needed as-
suming 8 GB capacity per HMC. As each stack supports 320 GB/s of
peak DRAM bandwidth, the aggregate bandwidth amounts to 5 TB/s.
The HMC also provides sufficient off-chip bandwidth (480 GB/s
based on current HMC specification [2]) to make the high DRAM
bandwidth accessible through high-speed links. However, state-of-
the-art GPUs [3, 46] only provide on the order of 1 TB/s or less
off-chip bandwidth, resulting in ~4 TB/s bandwidth being unused.

One promising approach for improving the utilization of the
memory bandwidth is near-data processing (NDP), which is to
implement processing elements on the logic layer in the 3D-stacked
memory device. The HMC also provides routing capability in the
logic layer such that multiple HMCs can be interconnected through
a memory network [29] and communicate with each other without
consuming the scarce GPU memory bandwidth. As the number of
processing elements in the logic layer and the bandwidth provided
by the memory network scales with the number of memory stacks,
the unused DRAM bandwidth can potentially be utilized through
NDP to improve performance.

While NDP with a memory network is a promising direction
to address the fundamental limitation of GPU off-chip bandwidth,
it is very challenging to enable it in a standardized manner such
that NDP can be done with future commodity memory devices. For
decades, mainstream DRAM devices have remained as standardized,
architecture-neutral components [4], and that has been the key rea-
son for their economic scale. By imposing a standardized hardware
interface for NDP, the memory stack can be designed indepen-
dently from any specific GPU architecture (e.g., either NVIDIA or
AMD). Unfortunately, all prior works on NDP either require an
architecture-specific MMU/TLB on the logic layer [10, 19, 26, 34] or
severely limit the memory access during NDP to a single memory
stack [6, 17, 20, 37, 48], which often requires the programmer to
manually place the data across multiple stacks [48]. Furthermore, it

https://doi.org/10.1145/3126908.3126965
https://doi.org/10.1145/3126908.3126965

SC17, November 12-17, 2017, Denver, CO, USA

is impossible to completely bound memory access to a single mem-
ory stack for workloads with irregular access patterns (e.g., graph
analysis) in general. Even for regular workloads, data placement can
change during runtime in modern systems under dynamic memory
management [14, 15, 24, 32]. Since any modern GPUs that support
virtual memory requires an MMU,! it is a significant challenge to
enable computation on memory stack without an MMU or TLB.

In this paper, we propose an architecture-neutral or standardiz-
able NDP-enabled memory stack which can be exploited by different
GPU architectures without any restriction on data placement. Our
key contribution is a partitioned execution mechanism which de-
couples address translation (on the GPU) from DRAM access and
register write-back (on the memory stack). With the partitioned
execution, address translation is always performed on the GPU and
the data movement is marshaled by the GPU. Thus, the memory-
side core that we refer to as NSU (Near-data processing SIMD Unit)
does not require an MMU. While removing the MMU from the
memory stack reduces complexity and cost, the key contribution of
this approach is that the memory stack can be built independently
of the GPU’s particular MMU implementation. Data movement
between different memory stacks goes through a memory network,
leveraging the unused HMC off-chip bandwidth without affecting
the GPU traffic. Finally, to avoid cache coherence overheads, we
avoid putting data caches on the NSU, but introduce NDP buffers
instead.

However, the NSU can become a bottleneck with unconstrained
offload as the NSUs provide relative low computational power com-
pared to the SMs (Streaming Multiprocessors) in the GPU. In order
to avoid the bottleneck and improve the utilization of the GPU SMs,
we propose an algorithm to dynamically split the work between the
GPU SMs and the NSUs. Furthermore, since cache-sensitive work-
loads can perform better when they are executed on the GPU to
exploit the large on-chip caches, we propose a cache-aware offload
decision algorithm to avoid performance loss for such workloads.

To the best of our knowledge, our approach is the first one to en-
able near-data processing for data distributed across multiple stacks
while supporting virtual memory system without any architecture-
specific component including MMU/TLB or data cache on the logic
layer. Creating a standard framework for NDP can be beneficial
as it creates the potential for commodity NDP-enabled memory
stacks, leveraging economies of scale across the industry.

To summarize, the contributions of this work include the follow-
ing:

e We propose a novel partitioned execution mechanism to en-
able near-data processing for data distributed across multiple
standardized memory stacks. We eliminate the need for an
architecture specific MMU/TLB or a data cache on the logic
layer of memory stacks in enabling NDP.

e We show how our NDP architecture can reduce the waste of
GPU off-chip bandwidth due to divergent memory accesses
by not fetching untouched data to the GPU.

e We study the limited performance of a naive implementa-
tion of the proposed partitioned execution mechanism and
improve performance through an algorithm to dynamically

1Recent GPUs have their own MMUs for accessing local graphics memory [33, 49].

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh

Near-data processing
SIMD Unit

3D-stacked
memory ",
(e.g., HMC)

—
Memory network

Figure 1: An overview of the proposed NDP architecture
with a memory network and an NSU in the logic layer of
each 3D-stacked memory.

Logic layer

split the work between the GPU and NDP units and adjust
the amount of computation offloaded.

o As offloading workloads with good cache locality to NDP
units can result in performance degradation, we propose a
dynamic, cache locality-aware offloading decision mecha-
nism. The evaluation result shows that, with the dynamic
offload ratio and cache locality-awareness, the performance
is improved by up to 66.8% (17.9% on average) compared to
the baseline.

2 PROPOSED ARCHITECTURE OVERVIEW

In this section, we provide an overview of our proposed standardiz-
able NDP architecture for GPUs that does not restrict data place-
ment. Our mechanism assumes simple, lightweight support from
software to identify offload blocks at compile time (Section 3).

Figure 1 shows the overview of the proposed NDP architecture.
We assume an HMC-like 3D-stacked memory, but other memory
devices with abstract, packetized protocols such as Gen-Z [9] can
be similarly extended to implement the NDP mechanism. In the
logic die of the memory, in addition to vault controllers and I/O
ports, there needs to be an NSU (Section 4.5) to execute offloaded
instructions. One of our key contributions is a novel partitioned
execution mechanism (Section 4.1) that splits the work between the
GPU SM and the NSU without requiring a GPU-specific MMU in the
memory stack. To support data communication between memory
stacks, a memory network is created by leveraging the routing
capability of the HMC. While communication between HMCs uses
off-chip links, the off-chip bandwidth of the HMC is matched to
the peak DRAM bandwidth and does not become a bottleneck [2].
Furthermore, since the communication between HMCs does not go
through GPU links, GPU traffic is not affected. By leveraging NDP
through a memory network, our proposed architecture can utilize
the DRAM bandwidth that cannot be fully utilized by a GPU alone
to improve performance for memory-intensive workloads.

Figure 2 shows an example of vector addition kernel execution
on the baseline and our NDP-enabled GPU with our partitioned
execution. Each thread reads two elements from two vectors (vector
A and B), adds them, and writes the result into vector C. In the
baseline (Figure 2(a)), the two vector data are fetched to the GPU (-
(@), the computation is done on the GPU, and the result is written
back to the memory (®-(®). Most of the bandwidth is consumed
by communicating data as indicated by the thick arrows in the
figure since the overhead of command messages (with addresses)
is amortized over multiple threads in a warp.

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs SC17, November 12-17, 2017, Denver, CO, USA

@ Offload CMD (5 Data

@ Addr (vec_A) (vec_A)

(@ Addr (vec_C)
~

@ Addr (vec_A)
—

(@ Data (vec_A)

(3 Addr (vec_B)
4) Data (vec_B)

(® Addr+Data (vec_C) _

= 2f)
(6) Write Ack

(@) (b)

Figure 2: Vector addition (e.g., C[tid]=A[tid]+B[tid]) exam-
ple with (a) baseline execution model and (b) the proposed
NDP architecture. Thick arrows represent large messages.

© Offload Ack

GPU

(3 Addr (vec_B)

Write Acl

On the contrary, with our proposed NDP execution model shown
in Figure 2(b), the data messages are communicated through a mem-
ory network, exploiting the HMC bandwidth that cannot be sat-
urated by the GPU alone. The offloading is done in the unit of a
warp (or wavefront) in our architecture. To initiate the offload, one
of the memory stacks that has one of the data accessed is chosen
as the NDP target, and its NSU is referred to as the target NSU.
Then, an offload command message is sent to the target NSU @),
and the GPU also immediately sends all memory read requests to
the memories that have the data (@ and) and provides write
addresses for store instructions to the target NSU (@). For read
requests, after DRAM is accessed, the data response is forwarded
to the target NSU in the same HMC ((®) or a different HMC ((®))
through the memory network. Then, the computation is done on
the target NSU, and the write request for the result is sent to the
appropriate memory (7)) using the address provided by the GPU.
After a write acknowledgment is received at the target NSU (®),
an offload acknowledgment message is sent back to the GPU to
notify that the offloaded execution is done ((9). Instead of fetching
the data to the GPU as in the baseline, read and write data are com-
municated through the memory network, reducing GPU off-chip
bandwidth demand and mitigating the bandwidth bottleneck. The
only message overhead we introduce is from the offload command
and acknowledgment messages, but the overhead is amortized over
multiple threads in a warp, which is the offload granularity. Note
that the bandwidth consumption from sending memory addresses
is the same for both the baseline and NDP system. Although we
show a short, fine-grained offload example for simplicity, our NDP
architecture enables both fine-grained and coarse-grained offload-
ing.

In the following sections, we describe how the code for NDP is
automatically generated for a target workload (Section 3) and the
details of the proposed architecture to perform NDP (Section 4).
Then, we evaluate and identify the limitation of a naive implemen-
tation of the proposed architecture (Section 6) and propose dynamic
offloading decision mechanisms to achieve better performance (Sec-
tion 7).

3 CODE GENERATION FOR NDP
3.1 Offload Block Identification

In this work, we refer to a segment of a given workload that can
benefit from NDP as an offload block. An offload block can be manu-
ally identified by programmer directives or automatically identified

by compiler analysis. In order to minimize programmer effort, we
leverage an automatized approach proposed by prior work [26].
Their approach analyzes assembly code of a given workload and ex-
tracts offload blocks that can result in speedup by offloading. While
they formulate a detailed equation for estimating the benefit and
overhead, in order to leverage it during static analysis, we remove
the cache hit rate and memory coalescing ratio terms that cannot
be statically determined and use the following equation:

Score = GPUTrafficReduction — OffloadOverhead (1)

Although cache hit rate is not available during static analysis, we
incorporate the workload’s cache locality during runtime to im-
prove offload decisions (Section 7). The score is used by the static
analyzer to extract offload blocks from the workload during com-
pile time. The term GPUTrafficReduction denotes the reduction in
GPU'’s off-chip traffic by offloading the block to an NSU for each
thread. For each load and store instruction in the block, GPUTraf-
ficReduction is increased by the data size since offloading it will
save the off-chip bandwidth by not transferring the data across
the GPU’s off-chip link. The GPU traffic for sending the accessed
address is not considered in this equation since address needs to be
sent off-chip regardless of whether the instruction is offloaded or
not as shown in Figure 2.

However, since the offloaded computation may require some
context information (i.e., register values) that resides in the GPU,
the context needs to be transferred from the GPU to the NSU before
offloading begins. Similarly, the GPU may require some register val-
ues generated within the offload block on the NSU to be sent back
to the GPU at the end of the offloaded execution. The term Offload-
Overhead in the equation reflects the amount of register transfer
overhead to and from the GPU for the offloaded block and can be
obtained from dependency between instructions through registers.
However, instructions that calculate memory addresses for load and
store instructions are not considered in the overhead calculation as
they are executed on the GPU as described in (Section 4).

Similar to the prior approach [26], we avoid offload blocks that
include scratchpad memory? instructions as workloads that effec-
tively leverage the on-chip scratchpad memory can perform better
on the GPU. In addition, synchronization among different threads
in a thread block can be most efficiently done on the GPU and we
do not include it in an offload block. An offload block needs to avoid
spanning multiple basic blocks since control divergence during NDP
is not desirable and can be better handled on the GPU [18, 28, 38].

Furthermore, in order to overcome the GPU’s memory diver-
gence limitation with indirect memory accesses, we add any single
indirect load instruction (i.e., memory access with address calcu-
lated from the value of another memory data) as an offload block.
Since such a memory read is often divergent, offloading it to an
NSU can significantly reduce GPU bandwidth waste and improve
performance (Section 4.4).

While the focus of this work is on the architecture to enable stan-
dardized NDP, additional programmer input or sophisticated code
analysis combined with compiler optimization can potentially fur-
ther improve performance by resulting in more efficient or coarse-
grained offload blocks. Although some of our evaluated workloads

2The on-chip scratchpad memory is referred to as “shared memory” in CUDA and
“local memory” in OpenCL.

SC17, November 12-17, 2017, Denver, CO, USA

PC Instruction
} }

0xA00: ...

0xA08: OFLD.BEG 0xD08, FO, 1, 1 //PC, SendFO,#LDs, #STs
0xA10: LD F1l, [R9] // generate RDF packet(s)

0xA18: MUL@NSU F2, FO, F1 //skip—will be executed on the NSU
0xA20: ADD R10, R1, R7 //memory address calculation

0xA28: ST [R10], F2 //generate WTA packet(s)
0xA30: OFLD.END F2 // write-back the data from ACK packet to F2
0xA38:

(a)
0xD00: ...
0xD08: OFLD.BEG FO, //Initialize FO with the data in the CMD packet
0xD10: LD F1 //load from read data buffer to F1
0xD18: MUL F2, FO, F1 //perform computation
0xD20: ST F2 // write F2 to mem. (w/ addr from WTA buffer)
0xD28: OFLD.END F2 //send F2 data back to the GPU in ACK packet
0xD30: ...

(b)

Figure 3: An example code of an offload block for (a) GPU
and (b) NSU. The embedded information for offload block is
indicated with boldface text.

include relative small offload blocks (Section 5), our proposal is not
limited to fine-grained offloading while we show that we improve
performance and energy-efficiency even for fined-grained offloads.

3.2 Offload Block Code Generation

The information of offload blocks identified by the static analyzer
needs to be embedded in the workload executable for the GPU as
shown in Figure 3(a). In addition, for each identified offload blocks,
a corresponding code for the NSU needs to be generated with the
NSU’s ISA as shown in Figure 3(b) and appended to the original
workload executable. Since the NSU provides a standardized ISA
that can differ from that of the GPU, the instructions in the offloaded
block need to be translated with the NSU’s ISA. However, as the
offload block only consists of simple load, store, and ALU instruc-
tions, the translation can be easily done by one-to-one mapping
between the two ISAs, along with remapping register IDs.

Two new special instructions, OFLD.BEG and OFLD.END, are in-
troduced to indicate the beginning and end of an offload block,
respectively. They also list the registers that need to be transferred
from the GPU to an NSU in the beginning and the registers that
need to be transferred back to the GPU. In the GPU code, OFLD.BEG
also specifies start PC address of the corresponding NSU code and
the number of load and store instructions (“1, 1” in Figure 3(a)) such
that the GPU SM can reserve buffers on the NSU.

Since memory addresses for all load and store instructions in an
offload block are generated on the GPU before offload begins, any
ALU instructions in the GPU code for memory address calculation
are removed from the NDP code. For example, the ADD instruction
for memory address calculation in Figure 3(a) is not included in
the corresponding NSU code in Figure 3(b). On the other hand, the
ALU instructions that are offloaded are marked by “@NSU” symbol
and not executed on the GPU. The following section describes how
the instructions are executed in detail.

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh

Target
NSU ID

1st register

Offload Physical Active
value

packet ID start PC thread mask

[C——
. (Register size) (# Regs) x (# Active threads)
(only if register transfer is needed)

i SMID | Warp ID | Seq.num‘.\i‘l

(a)
Offload Physical Active Target | 1t thread | 2"thread
packet ID base address | thread mask |NSU ID | offset offset

Y
For misaligned accesses only

(b)
Offload Physical Active Target | 1t thread | 2" thread
packet ID [base address | thread mask | NSU ID data data -

©

Figure 4: Offload packet format for (a) offload command
packets, (b) read-and-forward (RDF) request and write ad-
dress (WTA) packets, and (c) RDF response packets.

4 NEAR-DATA PROCESSING MODEL

4.1 Partitioned Execution

A significant challenge in enabling NDP in a standardized manner
without any restriction on data placement is address translation
since a standardized memory stack cannot assume an architecture-
specific MMU or TLB in its logic layer. In order to address the
challenge, we propose a novel partitioned execution model. In this
execution model, the work within an offload block is partitioned
between the GPU and NSU such that address calculation, generation,
coalescing, and sending memory access requests are done by the
GPU while computation on the memory data is done on the NSU. In
addition, in order to remove architecture-specific cache coherence
from the logic layer, we do not assume a data cache in the logic
layer but introduce NDP buffers instead as we describe below. In
this work, we focus on the partitioned execution for throughput
architectures, like GPUs, because these processors are the first
systems for which stacked memories are being deployed [3, 46], and
for CPUs, further studies need to be done to enable the partitioned
execution for out-of-order cores.

4.1.1 Partitioned Execution on the GPU
Begin offload (OFLD.BEG) instruction: Since the unit of control
flow in GPU is a warp, the offloading from GPU SM and its execu-
tion on the NSU are also done in the unit of a warp. The GPU is
responsible for generating different offload packets to initiate the
offloaded execution on the NSU while transferring context (register)
data and generating memory requests on behalf of the NSU. When
OFLD.BEG instruction is executed on an SM at the beginning of an
offload block, the SM generates an offload command packet with all
information needed for initiation of offloaded execution on the NSU,
including the register values that need to be transferred. Different
fields of an offload command packet are shown in Figure 4(a). The
first field of the packet is a unique offload packet ID, which is com-
mon for all types of packets introduced by our NDP mechanism. It
is composed of the SM ID, warp ID, and the sequence number that
is associated with each memory instruction. The offload command
packet and the first set of packets that are generated from the first
load or store instructions are given the sequence number of zero,

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs SC17, November 12-17, 2017, Denver, CO, USA

and the following load or store instruction increments the sequence
number by one.? The packet also specifies the physical address of
the start PC, which is the address of the OFLD.BEG instruction in
the code generated for the NSU (e.g., Figure 3(b)). We also assume
that the pages for NSU code are mapped to physically contiguous
memory region to remove any restriction due to page boundary.
The active thread mask field indicates which threads in the warp are
active. The shaded fields of the packet exist only if the OFLD.BEG
instruction indicates that there are registers that need to be trans-
ferred. The target NSU specified is determined by the first memory
instruction as explained in the description of memory instruction
handling below.

In addition, with the number of load and store instructions within
the block given by the OFLD . BEG instruction, the SM sends a reserva-
tion request to the GPU’s on-chip NDP buffer manager (Section 4.3)
to reserve read data buffer and write address buffer, which are needed
to handle memory instructions, in the target NSU. The number of
read data and write address buffer entries equals the number of
load and store instructions within the block, respectively.
Memory instruction: The semantics of load and store instructions
of partitioned execution is different from that of the normal execu-
tion mode. After addresses are generated and coalesced, instead of
accessing data cache to fetch data to the register, read-and-forward
(RDF) and write-address (WTA) packets (Figure 4(b)) are gener-
ated for load and store instructions, respectively. Compared to the
baseline execution model, sending these packets does not necessar-
ily increase energy or bandwidth consumption since the baseline
needs to send memory read and write requests instead. The packet
format is similar to that of the offload command packets up to the
target NSU ID field, but instead of start PC, the physical cache line
address that is accessed is provided. If the memory access pattern is
divergent and a single load/store instruction touches multiple cache
lines, one packet is generated for each memory address accessed in
cache line granularity. In addition, the offset of the word accessed
for each thread needs to be classified as either aligned or misaligned.
A memory access is aligned if the offset of the word accessed by
thread i (0 < i < WarpWidth) can be calculated as follows:

Addr; = CacheLineBaseAddr + i X WordSize

Otherwise, the memory access is classified as misaligned. For a
misaligned access, the offset from the cache line base address for
each thread is appended at the end the RDF or WTA packet as
shown in Figure 4(b).

The HMC accessed by the first load or store instruction becomes
the target NSU location. If multiple HMCs are accessed by the first
memory instruction, the HMC with the most accesses from the
instruction becomes the target. The target NSU, once determined,
does not change during the execution of an offload block to mini-
mize the overhead of communicating context. However, different
instances of an offload block (e.g., an offload block executed multi-
ple times within a loop) can be offloaded to different target NSUs
depending on the data location. Figure 5 shows the impact of target
NSU selection policy on memory traffic as the number of memory
accesses within an offload block is varied. We assumed 8 HMCs
and that the memory accesses are randomly mapped to the HMCs.

3The number of bits for the sequence number in the packet format determines the
maximum number of load and store instructions allowed in an offload block.

1.2
1.0 &
0.8
0.6
0.4
0.2
0.0

——Choosing the optimal HMC
— —Choosing the first HMC accessed

0 10 20 30 40 50 60
of memory accesses
Figure 5: Impact of target NSU selection policy on off-chip
memory traffic.

Normalized
amount of traffic

o f G
T
@
Gust O0SP onoler NSU

Time l, ST|———[Write address |

— |
wﬂ

(b)

Figure 6: Timeline diagrams for how (a) load and (b) store
instructions are executed in partitioned execution.

Compared to the optimal policy that chooses the target based on all
memory accesses in the offload block, our policy that only considers
the first memory instruction increases the traffic by at most 15%
only and the difference diminishes as the number of memory access
increases. Since the optimal policy requires a huge amount of buffer
to store all memory addresses generated, we choose the first HMC
policy to avoid such overhead.

Figure 6(a) shows how RDF packets are communicated between
the GPU and NSU. When an RDF packet is generated, it is first
sent to the GPU on-chip caches and if it hits in the cache, an RDF
response packet (Figure 4(c)) is generated with the cached data
and sent to the target NSU to minimize DRAM access. Otherwise,
the RDF packet is sent to the HMC’s vault that the RDF address
is mapped to and a response packet is generated with DRAM data
and sent to the target NSU. Based on the active thread mask field of
the RDF packet, only the data words that are actually accessed will
be included in the response packet. For a write, a WTA packet is
directly sent to the target NSU as shown in Figure 6(b), which will
later use the packet to generate write requests for store instructions.
ALU instruction: Among all ALU instructions within an offload
block, only those that calculate memory addresses are executed
on the GPU (e.g., ADD instruction in Figure 3(a)) to generate and
translate the address. Other ALU instructions will be executed on
the NSU and they are marked at compile time as shown for the MUL
instruction in Figure 3(a) and replaced with a NOP instruction on
the GPU.

End offload (OFLD.END) instruction: This instruction signifies
the end of an offload block. From this point, the execution of the
warp will be blocked until the execution of the offloaded block on
the NSU is finished and an acknowledgment from the target NSU is

SC17, November 12-17, 2017, Denver, CO, USA

received at the GPU. However, the SM can context-switch to other
warps to keep the SM busy.

NDP buffers in the GPU: There are two buffers - a pending packet
buffer and a ready packet buffer in each GPU SM. If the target NSU
is determined and the buffers on the NSU are granted by the buffer
manager, the generated packet is queued in the ready packet buffer.
Otherwise, it is queued in the pending packet buffer. A packet in
the ready buffer can be sent to the destination HMC, but a packet
in the pending buffer waits until the target NSU is determined and
a buffer entry in the NSU is granted. When the state of the packet
at the front of the pending queue is changed to ready state, it is
sent to the target NSU.

Handling dynamic memory management: Although relatively
infrequent, if a new page needs to be swapped in (e.g., between the
host CPU and the GPU) while there is on-going offloaded execution,
the writes for the new page need to be stalled until in-flight WTA
messages to the same HMC are handled to guarantee correctness,
while other HMC data can still be accessed. This can be done by
keeping a counter of in-flight WTA packets for each HMC and
waiting until the destination HMC has no in-flight WTA packets.
The counter can be incremented for each WTA packet generated
and decremented as the cache invalidation packet (Figure 6(b)) for a
WTA is received at the GPU. The delay can be overlapped with the
delay to fetch pages from an external interface such as NVLink or
PCle, which takes tens of microseconds [49]. In-flight RDF packets
are not impacted as long as the write packets for the new page are
sent through the same direct path to the HMC as the RDF packets,
since the order will be preserved [2].

4.1.2 Partitioned Execution on the NSU

Begin offload (OFLD.BEG) instruction: When an offload com-
mand packet is received at an NSU and there is an empty warp
slot available, a new warp is spawned on the NSU. The NSU’s
instruction fetch unit accesses the start PC given by the offload
command through its physical instruction cache. The first instruc-
tion executed is the OFLD.BEG instruction, which can also specify
the registers that need to be initialized with the data provided in
the offload command packet. The offload packet ID for the current
warp is initialized with the value provided in the command packet.
Memory instruction: For a load instruction, the NSU accesses the
read data buffer with the current offload packet ID (Figure 4(a)). A
read data buffer’s entry consists of two fields - offload packet ID and
the data for each thread. If the RDF packet has not arrived yet, the
warp stalls until it arrives and the buffer entry is filled. If multiple
RDF packets are generated from the GPU for a load instruction,
their response packets are merged into a single entry in the read
data buffer based on the packet’s active thread mask. If all data
have arrived for all active threads in the warp, they are loaded into
the register specified by the load instruction. Similarly, for a store
instruction, the write address buffer in the NSU is accessed with the
current offload packet ID to obtain the physical memory addresses
for the write. Then, as shown in Figure 6(b), the NSU generates
write packets and sends them to the destination vault controllers
(in the same or different HMCs), which will write the data and send
acknowledgments back to the NSU. After a load or store instruction
is executed, the current sequence number is incremented to identify
the offload packet ID for the next memory instruction.

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh

ALU instruction: ALU instructions in the offloaded code (e.g., MUL
instruction in Figure 3(b)) can be executed normally with the data in
the NSU’s registers. Any ALU instructions that calculate memory
addresses in the original code are removed from the NSU code
during code translation.

End offload (OFLD.END) instruction: The warp waits until all in-
flight DRAM writes are acknowledged, and then, the NSU generates
an offload acknowledgment packet that consists of the current offload
packet ID and register data that need to be transferred back to the
GPU SM as a result of NDP. After the acknowledgment is sent
to the GPU, the warp will be destroyed such that another offload
command can be executed.

4.2 Cache Coherence

While we do not introduce data cache in the memory stack, the
GPU’s existing cache coherence needs to be preserved. In this work,
we assume a relaxed memory consistency of CUDA and OpenCL
programming models. With our mechanism, the NSU is guaranteed
to load the most recent data through the RDF response packet since
it is generated with cached data if there is a cache hit. In addition,
when the offloaded execution is finished and the GPU thread re-
sumes execution, it should obtain the most recent data written from
the NSU. When the NSU performs a memory write, since the data
are directly written to DRAM, the GPU cache can hold stale data
which need to be invalidated. Thus, a cache invalidation message
is generated from the vault controller to the GPU cache after each
memory write is done. Based on our evaluation, the overhead from
additional off-chip traffic is minimal (up to 1.42% and 0.38% on
average for our evaluated workloads). Alternatively, the GPU can
keep the store addresses generated within the offloaded block and
invalidate them from the cache after the offloaded execution is
finished, but we do not choose this approach to avoid the additional
storage overhead.

4.3 Deadlock Prevention

Our mechanism also ensures deadlock-freedom for the NSU’s buffers
through credit-based buffer management. Deadlock can occur, for
example, if the read data buffer is full of entries that will be accessed
by later load instructions while there is an in-flight RDF response
since it cannot be ejected from the network by the NSU. Thus,
there is an NDP buffer management logic in the GPU that keeps
the credit counts for the different buffers (i.e., offload command,
read data, and write address buffers) in each HMC. The SM sends a
buffer reservation request to the buffer manager on the GPU at the
beginning of an offload block and the request is granted if there
are sufficient credits. The NSU sends a credit to the buffer manager
as buffer entries become available. The credit information can be
piggybacked to other packets to minimize overhead.

4.4 Bandwidth Saving for Divergent Memory
Access

For irregular workloads with divergent accesses, the GPU’s off-chip
bandwidth can be wasted by fetching all cache lines touched and
then evicting them after little access to the data [39, 41]. In addition
to reducing off-chip bandwidth consumption for regular workloads,
our NDP mechanism can also reduce the waste of bandwidth due

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs SC17, November 12-17, 2017, Denver, CO, USA

to divergent memory accesses by offloading each of them as a
single-instruction offload block. Thus, for a memory access pattern
that can be expressed as x=B[A[i]], where A and B are arrays, the
second load instruction that accesses array B is chosen as an offload
block. Since the index for array B is calculated from memory data
in array A, the indices accessed by the threads in the same warp
can be very irregular and result in divergent accesses to different
cache lines. If such an instruction is offloaded to an NSU, since the
RDF response packets will only contain the data that are actually
accessed by active threads, off-chip bandwidth will not be wasted
to transfer data that will not be eventually accessed. Then, after
all data are gathered in the read data buffer and loaded into the
register on the NSU, the data will be sent back to the GPU in an
offload acknowledgment packet. As a result, the warp in the GPU
can fetch only the accessed data without fetching all unnecessary
data in cache line granularity and polluting the cache. Among our
evaluated workloads in Table 1, BFS and STCL include such offload
blocks that consist of a single indirect load instruction.

4.5 NSU Design

The NSU can be implemented similar to the GPU SM but at a lower
cost since it does not require several components of the SM. The
NSU does not require data cache or scratchpad memory, and a
small instruction cache and a register file can be sufficient since
the instruction footprint for the offload blocks is small compared
to that of the entire workloads. In addition, the NSU does not incur
the MMU or TLB overhead, and the load/store unit is simplified
since memory address generation and coalescing are done in the
GPU and the NSU only accesses its local NDP buffers. Graphics-
specific components such as texture unit with texture cache can
also be removed from the NSU. Since the NSU executes memory-
bound portions of the workload, it does not require high clock
frequency and we assume it runs at half of the GPU SM frequency.
We also study the impact of NSU clock frequency and show that
running it at an even lower frequency can still provide most of the
benefits (Section 7). The physical SIMD width of the NSU can also
be made small while supporting larger or variable logical SIMD
width through temporal SIMT [27].

5 EVALUATION METHODOLOGY

We modified GPGPU-sim [8] (version 3.2.0) to evaluate the perfor-
mance of the proposed NDP mechanism. We model the pending
and ready NDP buffers in the GPU and the different NDP buffers
in the NSU, as well as the credit-based buffer management. The
configuration of the system is given in Table 2 and we assume write-
through policy for the GPU on-chip caches. The total number of
SMs and bandwidth of the evaluated system are scaled down from
the most recent GPUs for simulation feasibility, but we also present
the impact of more powerful GPUs in Section 7.3. We focused on
memory-intensive workloads listed in Table 1 from Rodinia [13],
Parboil [44], NVIDIA CUDA SDK examples [1], and Polybench [22]
for evaluation, as compute intensive workloads will result in no of-
floading by our optimization in Section 7 and the memory network
and NSU can be power-gated. We performed static analysis of the
workloads to automatically identify the offload blocks from the PTX
assembly code and used it to evaluate the NDP mechanism. The

Table 1: Evaluated workloads

’ Abbr. H Input problem Description (s)i;ﬂlo(:fdhl:i(t)g(
BPROP || 512K points Back Propagation [13] 29,23
BFS 1M nodes Breadth-first search [13] 1,1,16
BICG 6KX6K BiCGStab solver [22] 44
FWT data: 272, kernel: 217 | Fast Walsh Transform [1] 16,4
KMN 28k obj, 138 feat. K-means [13, 40] 3
MiniFE 128X64X64 Finite element method [25] 3
SP 512 32K-vectors Scalar product [1] 3
STN 512x512x64 grid Stencil [44] 15
STCL 16k pts/blk, 1 blk Streamcluster [13] 3,9,1,1
VADD 50M elements Vector addition [1] 4

Table 2: System configuration

GPU
Parameter Value
of SMs 64 SMs
of HMCs 8
s 20 GB/s for each direction of a link.
Off-chip link BW Total 8 bidirectional links.
SM 1536 threads, 8 CTAs, 32768 registers,

48 KB scratchpad memory, warp width: 32
4 KB, 4-way, 128 B line, MSHR: 2

32 KB, 4-way, 128 B line, MSHR: 48

2 MB, 16-way, 128 B line, MSHR: 48

700, 1250, 700 MHz

HMC

L1 inst. cache

L1 data cache

L2 cache

SM, Xbar, L2 clock

Parameter Value

HMC organization || 8 layers X 16 vaults, 16 banks/vault
HMC memory size 4GB

Memory scheduler || FR-FCFS, Vault request queue size: 64
tCK=1.50ns, tRP=9, tCCD=4, tRCD=9,

DRAM timing {CL=9, tWR=12, tRAS=24
DRAM bandwidth DDR3-1333H
Off-chip link BW 20GB/s in each direction for a link.

Total 4 bidirectional links.

NDP-specific configuration
Parameter Value
350 MHz, 48 warps, warp width: 32

NSU 4 KB constant cache, 4 KB instruction cache
. 8 BX300 entries for pending packet buffer
Buffers in GPU SM 8 BX64 entries for ready packet buffer
128 BX256 entries for read data buffer
Buffers in NSU 128 BX256 entries for write address buffer

10 entries for offload command buffer

last column of Table 1 lists the number of instructions in offload
blocks translated for NSU (i.e., all unmarked ALU instructions that
calculate memory addresses are removed). The number of registers
transferred between the GPU and NSU is also statically determined
and, for the evaluated workloads, the GPU transmitted (received)
only 0.41 (0.47) registers per thread on average. For the memory
network, we used 3D hypercube topology to interconnect 8 HMCs,
using 3 links per HMC.# In order to properly evaluate the impact of
data distributed across multiple HMCs, we used a random mapping
of pages in 4 KB granularity. We modified GPUWattch [31] to model
the system power including the NSU and memory network and we
assumed off-chip link energy of 2 p]J/bit [36]. The power for the
stacked memory is derived from the Rambus model [45], which
models a DRAM device similar to that described in [30], and TSV
models from [12]. From the models, the row activation energy is
estimated to be 11.8 nJ for a 4 KB row [43] and the DRAM row buffer
read energy is estimated as 4p]J/b. The wire energy for moving data
on the GPU is estimated using values from [27], assuming a 20mm
% 30mm GPU die.

4The HMC provides up to 4 links according to HMC specification 2.1 [2].

SC17, November 12-17, 2017, Denver, CO, USA

@ Baseline B Baseline_MoreCore @ NaiveNDP

BPROP BFS BICG FWT KMN MiniFE SP

STN STCL VADD GMEAN

Figure 7: Performance of the naive NDP mechanism com-
pared to different baselines.

O ExecUnitBusy B Warp Idle B Dependency Stall
239 454 Baseline
s %0 Baseline_MoreCore
815 aiveNDP
g 1.0
PR San B Bon SEa SnN Ead Ron B
BPROP BFS BICG FWT KMN MiniFE SP STN STCL VADD

Figure 8: Breakdown of instruction no-issue cycles on the
GPU. The numbers are normalized to the total no-issue cy-
cles of the baseline.

6 NAIVE IMPLEMENTATION RESULT

Figure 7 shows the performance of naively leveraging the proposed
NDP mechanism. The NaiveNDP has a total of 72 SIMD units in
the system — 64 SMs in the GPU and 8 NSUs, one per each HMC
whereas the Baseline has only 64 SMs in the GPU. In order to
evaluate the impact of the additional SIMD units, we also evalu-
ate another baseline referred to as Baseline_MoreCore that has
8 additional SMs in the GPU. The result shows that compared to
the baseline, Baseline_MoreCore only resulted in less than 3% im-
provement for all workloads except for KMN which was improved
by 25.7% due to the additional SMs’ L1 data cache. However, the
naive NDP mechanism resulted in performance degradation for all
evaluated workloads — by up to 86% for STN and 52% on average.
In order to analyze the performance degradation, we show a break-
down of instruction no-issue cycles on the GPU due to different
reasons in Figure 8. The no-issue cycles are classified into three
categories. “ExecUnitBusy” is when the execution unit was not
available. “Dependency stall” is when an operand was not ready
and this includes stalls due to cache or DRAM accesses. “Warp idle”
is when a warp does not have a valid instruction to issue due to
an empty instruction buffer, no active thread, or synchronization.
For the NDP system, this category includes the cycles when warps
are blocked while waiting for an acknowledgment packet from
offloaded execution.

In the two baselines, since we focus on memory-intensive work-
loads, dependency stalls take a significant portion of no-issue cycles
as memory bandwidth becomes a bottleneck, resulting in long mem-
ory access latency. For some workloads such as BFS and KMN, there
is also significant stall time due to busy execution units, but overall,
the warp idle cycles take a relatively small portion of no-issue cy-
cles. However, with the naive NDP, the portion of warp idle cycles
is significantly increased as many warps are stalled waiting for the
offloaded blocks to finish on the NSUs, resulting in underutiliza-
tion of the GPU and performance degradation. Thus, we propose
improvements to the NDP mechanism to achieve speedups over
the baseline in the following section.

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh

7 IMPROVING PERFORMANCE THROUGH
DYNAMIC OFFLOADING DECISION

7.1 Impact of Static Offload Ratio

As the NSU becomes the bottleneck for the naive NDP mechanism
and the GPU is underutilized, we evaluated the NDP mechanism
with partial offloading. With partial offloading, an offload block may
or may not be offloaded depending on the output of offload decision
logic. In order to study the impact of the amount of offloaded blocks
on the performance, we varied the ratio of offload block instances
from 0.2 to 1.0 with a step size of 0.2. Since the decision logic can-
not be aware of the impact of offloading each instance of different
blocks before executing it, we assumed the decision is randomly
made to meet the given offload ratio. In this experiment, the ratio is
static and does not change during workload runtime. The result in
Figure 9 (NDP(@.2-1.0)) shows that performance can be improved
by up to 63.6% for KMN and several other workloads benefit from
20-40% improvement depending on the offload ratio. BFS benefited
from offloading divergent memory accesses and resulted in 31%
speedup for offload ratio of 0.4. However, there is only degradation
for BPROP, BICG, STN, and STCL. For BPROP, the performance was
further degraded as offload ratio was increased as it has a small,
constant data structure of 68 bytes regardless of input problem size
that is accessed within all offload blocks. In the baseline, accesses
to this data structure mostly result in cache hits, but with the NDP
mechanism, the data are always transferred off-chip from the GPU
to the NSU after RDF requests hit in the cache and the off-chip
bandwidth of the GPU becomes the bottleneck. Such a workload
can benefit from adding a small read-only cache to each NSU with
minimal cost. The performance of BICG did not improve with the
evaluated static offloading but it was due to the large granularity
we used to change the offload ratio and there was performance
improvement with smaller offload ratio. For example, the offload
ratio of 0.15 resulted in an 11.5% speedup. For STN, the baseline
showed a moderate cache hit rate of 45% in the L2 cache for read
accesses, and thus, the NDP resulted in performance degradation
as it increased DRAM accesses. The performance of STCL was de-
graded for the same reason. For other workloads, as offload ratio
is increased, the performance improves until the NSU becomes a
bottleneck, and then the performance degrades as more blocks are
offloaded. The evaluated workloads resulted in different optimal
offload ratios as they have different amount of memory accesses,
memory divergence, and the amount of computation within the
offload blocks. There was no single static offload ratio that resulted
in the best performance for all workloads. Thus, we propose dynam-
ically determining the offload ratio as described in the following
subsections.

7.2 Dynamic Offload Ratio

In this section, we propose an algorithm to dynamically determine
a near-optimal offload ratio based on hill climbing method in Al-
gorithm 1. In order to minimize the overhead of executing the
algorithm, we propose an epoch-based approach where the offload
ratio is computed once at the end of each long epoch and used
throughout the next epoch. Since the algorithm is simple, it can
be executed within a short time and during its execution, offload

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs SC17, November 12-17, 2017, Denver, CO, USA

OBaseline mBaseline_MoreCore ®mNDP(0.2) mNDP(0.4) ®mNDP(0.6) @NDP(0.8) @NDP(1.0) @NDP(Dyn) mNDP(Dyn)_Cache
1.8
1.6 /] 1179
all P — - :
S0l 17 A i 4l 7 Al 7
206 L) (e VN | | .i || -‘5 || '5 ||
&04 - 2 s 7 7 7 7
02 A [l : : : A
BPROP BFS BICG FWT KMN MiniFE SP STN STCL VADD GMEAN

Figure 9: Performance of the NDP as offloading ratio is statically varied, and NDP with dynamic offloading decision.

Algorithm 1 Dynamic offload ratio decision algorithm based on
hill climbing method

init: Stepcyr < Stepmax, Ratiocyr < Ratiojnir

At the end of each epoch except for the first:

if cur_avg_ipc < prev_avg_ipc then
dir « dir x (-1) > Reverse direction if getting worse
dir_change_history.push_back (true)

else
dir_change_history.push_back (false)

end if

if dir_change_history.size > Window_size then
pop front from dir_change_history
end if

N_changes « # of true in dir_change_history

if N_change > Window_size/2 AND Stepmin < Stepcyr then
Stepeyur < Stepcur — Stepunir

else if Stepeyr < Stepmax then
Stepcur < Stepcur + Stepunit

end if

if Stepynir < Ratiocyr < 1.0 — Stepynir then
Ratiocyyr < Ratiocyy + dir X Stepynit
end if

ratio from the previous epoch can be used with little impact on
performance, assuming sufficiently large epoch length.

The algorithm measures the instruction throughput with a given
offload ratio during each epoch and compares the throughput with
that of the previous epoch. If the throughput is increased, the offload
ratio is further moved in the same direction (i.e., keep increasing
or decreasing) by the current step size. On the contrary, if the
throughput is decreased, the offload ratio is varied in the opposite
direction (i.e., start increasing if it was decreasing or vice versa)
by the current step size. In order to accurately measure the impact
of the offload ratio, the instruction throughput only considers the
instructions within the offload block regardless of whether it was
offloaded or not. However, since the algorithm keeps trying different
offload ratios, it can result in oscillation instead of maintaining the
optimal ratio after it is found. On the other hand, the characteristics
of a workload can change during execution and it can be beneficial
to keep trying different offload ratios. Thus, our proposed algorithm
uses an adaptive step size based on recent history of changes in
the direction of movement. If the offload ratio keeps moving in

the same direction, using a larger step can result in reaching the
optimal offload ratio faster (or within a small number of epochs). On
the other hand, if the offload ratio continually reverses the direction
of movement, it indicates that the optimal offload ratio is close to
current ratio, and thus, using a smaller step will result in more
closely approaching the optimal ratio while reducing the impact of
oscillation. Thus, the algorithm keeps a history of the changes in
the direction of movement (either changed or not changed) and if
there were more changes in the direction than moving in the same
direction, a smaller step is used. Otherwise, a larger step size is used
to vary the offload ratio. We impose a lower bound and an upper
bound on the step size to avoid becoming susceptible to small noise
due to too small step sizes or missing the optimal ratio due to too
large step sizes. In this work, we assume an epoch length of 30,000
cycles, an initial offload ratio of 0.1, an initial step size of 0.15, the
granularity of step size change of 0.05, maximum and minimum
step sizes of 0.05 and 0.15, respectively, and history window size
of 4. Since the algorithm is simple, it can be either implemented in
hardware or executed on the GPU’s embedded CPU [47]. Once the
offload ratio is determined, it is used to determine whether each
block instance will be offloaded, similar to the static offload ratio.

The result of the proposed dynamic offload ratio decision algo-
rithm is shown in Figure 9 as NDP(Dyn). For most workloads, the
algorithm resulted in performance close to that of the best offload
ratio, resulting in a speedup of up to 66.8% for KMN, and 14.9% on
average. For VADD, due to the oscillation that can still occur, the
dynamic ratio resulted in 9% lower performance than that of the
best static ratio, but still provided 24.9% speedup over the baseline.
On the other hand, the oscillation degraded the performance of
STN by 17% compared to the baseline. As this workload exhibits
good cache locality as described in Section 7.1, the optimal offload
ratio is 0 and not offloading any block gives the best performance.
However, the dynamic offload ratio decision algorithm continually
tries non-zero offload ratios although it is varied in a small step.
In general, different offload blocks can have different cache local-
ity, and the cache-sensitive offload blocks need to be suppressed
from being offloaded while other blocks still benefit from offloading.
Thus, we propose incorporating each offload block’s cache locality
in the offload decision in the next subsection.

7.3 Cache Locality-Aware Offload Decision

Workloads with good cache locality can execute more efficiently on
the GPU than on the NSU due to the high bandwidth and low energy
of the GPU’s on-chip caches. While static analysis at compile time
can often identify the memory access pattern and may be able to
infer cache locality information, it is limited to regular workloads,
and the cache behavior is unpredictable for irregular workloads at

SC17, November 12-17, 2017, Denver, CO, USA

1.2

negy

aliz

or

@ U.

Bo.

€ 0.

Z0.2 |6k
0

BFS BICG FWT KMN

BGPU ®NSU BIntra-HMC NoC S Off-chip ICNT ODRAM B Total energy

MiniFE

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh

[ZTT 0.914

STCL VADD GMEAN

SP STN

Figure 10: Normalized energy for different baselines and NDP mechanisms.

compile time. Thus, the cache behavior needs to be measured at
runtime for high accuracy. While prior work [6] proposed cache
locality-aware offloading decision, their NDP mechanism was lim-
ited to only accessing a single cache line during offloaded execution
and thus, is not applicable to our approach.

In this work, we propose to measure the cache behavior of the
offload blocks and use the information to suppress offloading the
block if the overhead outweighs the benefit. For each offload block,
the number of RDF packets generated and the number of cache hits
for the RDF packets are accumulated to obtain the average number
of RDF packets generated (AvgNumCacheLines) and the average
miss rate for the RDF packets (AvgCacheMissRate). Then, the benefit
of the offload block is calculated by the following equation.

Benefit =[AvgNumCacheLines X AvgCacheMissRate]
X CacheLineSize X SIMDW idth
+ NumStorelnsts X WordSize x SIMDW idth

The first and second term estimate the benefit from offloading load
and store instructions within the block, respectively. In the first
term, the average number of cache lines accessed is multiplied by
the miss rate to estimate the number of cache lines that need to be
fetched from DRAM if this offload block were to be executed on the
GPU. This gives the benefit from offloading the load instructions
as offloading them will result in GPU traffic reduction. The ceiling
function is needed since data fetch is done in cache line granularity.
For store instructions, since we assume a write-through cache,
the amount of data that need to be transferred off-chip equals
the number of data words written. The value of NumStorelnsts is
specified by the OFLD.BEG instruction as described in Section 3.2.
The Benefit calculated is substituted into GPUTrafficReduction in
Equation 1 to obtain the score of an offload block and if the score
is not positive, the block is not offloaded. Otherwise, the block
can be offloaded based on current offload ratio that is dynamically
determined by Algorithm 1.

Performance improvements by the cache locality-aware offload
decision are shown in Figure 9 as the last column for each workload
(NDP (Dyn)_Cache). The performance for STN is improved compared
with NDP(Dyn) as its offload blocks are suppressed from being of-
floaded based on the cache locality. The overall speedup compared
to the baseline is increased from 14.9% to 17.9% while other work-
loads were nearly unaffected. We also studied the impact of a more
powerful GPU. When the number of compute units in the GPU
is doubled for all configurations, the proposed offloading mecha-
nism resulted in an 11.6% speedup over baseline on average. Even

50 %
40 %
30 %

S odedd]l d

BPROP BFS BICG FWT KMN MiniFE SP STN STCL VADD AVG

B NSU I-cache utilization @ Avg. NSU warp occupancy

Figure 11: I-cache utilization and warp occupancy of NSU.

with more compute units and caches in the GPU, the off-chip band-
width can still become a bottleneck and we overcome the limitation
through memory network-based NDP.

7.4 Energy Reduction

Figure 10 compares the energy consumption of the proposed NDP
model with that of the baseline execution model. Compared to the
baseline, baseline with more SMs resulted in nearly the same energy
as the baseline as a slight reduction in runtime was offset by the
increased power consumption by additional SMs. On the contrary,
the proposed NDP mechanism reduced energy by up to 37.6% for
KMN and by 7.5% on average with NDP(Dyn). NDP(Dyn)_Cache re-
sulted in a higher reduction of 8.6% with cache locality awareness.
Note that this energy reduction takes into account the additional
HMC links for the memory network and the increase in data traffic
due to NDP.

7.5 Hardware Overhead

Our NDP mechanism introduces little hardware overhead in the
GPU. For the configuration we assume in our evaluation (Table 2),
each SM requires 2.84 KB storage for the pending and ready packet
buffers which is significantly smaller than existing per-SM on-
chip storage including L1 data and instruction caches, scratchpad
memory, constant cache, and texture cache, as well as the L2 cache
in modern GPUs. For the configuration we assume, the storage
overhead is only 1.8% of total on-chip storage on the GPU.

In addition, Figure 11 shows the utilization of instruction cache
and warp occupancy of the NSU during runtime. As we only offload
memory-intensive segments of the workload, the instruction cache
shows very low utilization of 23.7% out of 4 KB per NSU. In addition,
the average SIMD thread occupancy is at most 39.3% (for SP) and
22.1% on average out of 48 available SIMD hardware threads. Thus,
the NSU can be implemented at low cost as well.

7.6 Performance Sensitivity to NSU Frequency

Since the goal of our NDP mechanism is to offload memory-intensive
segments of workloads, the NSU can be mainly memory-bound
rather than being compute-bound. In addition, since one of the
considerations of NDP is the thermal impact of introducing a com-
pute unit in the memory stack, it is desirable to run the NSU at a

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs SC17, November 12-17, 2017, Denver, CO, USA

low frequency. Thus, we studied the impact of reducing the clock
frequency of the NSU by half. Compared to the 350 MHz NSU result
shown in Figure 9, 175 MHz NSU still achieved a speedup of up
to 67.7% (for KMN) and 14.1% on average when the dynamic offload
ratio decision and cache-locality awareness were used. Because of
the low performance requirement of the NSU, it can be fabricated
in a cheaper, older technology compared to DRAM and GPU, and
run at a low frequency.

8 RELATED WORK

There have been many researches that proposed processing-in-
memory through single-die integration of logic and DRAM in the
late 90s to early 2000s, but they were limited by high manufactur-
ing cost and unconventional programming models. Several recent
works [5, 23, 37] proposed NDP for specific target workloads such
as MapReduce, key-value store, or graph processing, but we focus
on standardizable NDP architecture that is not limited to any frame-
work. While several prior works investigated the design of general-
purpose NDP systems, they either restricted data access during NDP
to a single memory device or introduced an architecture-specific
MMU or TLB in the logic layer of the memory.

8.1 Prior Work with Data Access Restriction

Terasys [21] was one of the early designs of processing-in-memory
(PIM), where SIMD processing was done in memory devices. It
supported communication among PIM chips to perform reduction
operation, but unstructured data had to be sent through the host
processor. PEI (PIM-Enabled Instructions) [6] proposed special in-
structions that can perform computation on the logic layer of the
HMC to accelerate data-intensive workloads. However, one of its
limitations is that only a single cache line can be accessed during
the offloaded computation while we overcome such a limitation.
HRL [20] combined both fine-grained and coarse-grained blocks for
NDP to achieve high performance as well as high power-efficiency
but did not support virtual memory. They propose NDP within spe-
cial, non-cacheable region to avoid the virtual memory translation
and cache coherence protocol. TOP-PIM [48] studied the impact
of heterogeneous processing units with CPU and GPU cores on
the logic layer of 3D-stacked memories. They presented simula-
tion methodology for performance and power evaluation of NDP
architecture as well as characterization of workloads in the con-
text of NDP. They assumed that programmer manually places the
data across multiple stacks while the NDP logic can only access
the data in the same memory stack. NDA [17] proposed stacking
a logic layer on top of a DRAM device to enable NDP while pro-
viding a standard DDR memory interface to the processor. They
assumed CGRA (Coarse-grain Reconfigurable Accelerator)-based
processing element for NDP. Although they did not introduce an
architecture-specific component in the logic layer, only a single
memory device can be accessed during NDP and the data need to be
shuffled while the ownership of the DRAM is switched between the
processor and the CGRAs. Chameleon [7] proposed a near-DRAM
accelerator that can be integrated to data buffers of conventional
LRDIMM, without requiring 2.5D or 3D integration. Pattnaik et
al. [35] proposed scheduling techniques for an NDP-enabled GPU
system running multiple concurrent kernels. They presented an
execution time predictor that guides the scheduler in determining

where each kernel will be scheduled between the main GPU and the
GPU-PIM in the memory stack. While they evaluated the perfor-
mance with multiple memory stacks, each GPU-PIM was assumed
to only access the data within a single memory device.

8.2 Prior Work with Architecture-specific
MMU/TLB

DIVA [16] was another early work that demonstrated the benefits
of PIM. Communication between PIM devices was supported by a
dedicated network while address translation was done within the
PIM device. Active Memory Cube [34] focused on NDP through vec-
tor processing units in the 3D-stacked memory. They introduced an
MMU on the logic layer and their vector units only processed data
within the same memory stack. A recent prior work [26] proposed
automatically identifying offload blocks within GPU workloads
and a mechanism to dynamically determine the memory mapping
of data across multiple stacks in a programmer-transparent man-
ner. However, they also assumed an architecture-specific TLB on
the logic layer. In addition, while modern GPUs support dynamic
memory management between CPU and GPU, they assumed that
memory mapping does not change during execution to avoid TLB
shootdown for the memory-side TLB. Gao et al. [19] proposed hard-
ware/software architectures to realize a practical NDP system and
presented design space exploration. They assumed architecture-
specific TLB on the logic layer to enable memory access across
multiple stacks for NDP.

9 CONCLUSION

We proposed an architecture-neutral mechanism to perform NDP
in a standardized manner while removing any restriction on data
placement across multiple memory stacks. Our proposed architec-
ture also overcomes the limitations of prior work as we do not
require the programmer to manually specify data placement. We
designed a partitioned execution mechanism where the GPU per-
forms address generation and translation while coordinating data
movement between memory stacks, thereby avoiding architecture-
specific address translation on the memory stacks. We evaluated
the performance of a naive implementation of the NDP mechanism
and proposed an algorithm to dynamically adjust the offload ratio
to achieve higher performance. Furthermore, we also proposed a
cache locality-aware offload decision mechanism to prevent per-
formance degradation for workloads with good cache locality. Our
evaluation results show that the proposed mechanism achieved a
speedup of up to 66.8% (17.9% on average) and an energy reduction
of up to 37.6% (8.6% on average) while incurring low hardware
overhead.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
valuable feedback. This work was supported by the U.S. Department
of Energy.

REFERENCES

[1] 2011. CUDA C/C++ SDK code samples. NVIDIA. (2011).

[2] 2014. Hybrid Memory Cube Specification 2.1. Hybrid Memory Cube Consortium.
(2014).

2016. NVIDIA Tesla P100. (2016). NVIDIA white paper.

2017. JEDEC Solid State Technology Association. (2017). http://jedec.org.

[3
[4

http://jedec.org

SC17, November 12-17, 2017, Denver, CO, USA

[5] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

[9

[10

[11

[12

[13

[14
[15

[16

[18

[19

[20

[21

[22

[23

[24

[26

[27

=

]

]

]

]

]

]

]

]

]
1

]

2015. A Scalable Processing-in-memory Accelerator for Parallel Graph Process-
ing. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA ’15).

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
Instructions: A Low-overhead, Locality-aware Processing-in-memory Architec-
ture. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA ’15).

H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim. 2016. Chameleon:
Versatile and practical near-DRAM acceleration architecture for large memory
systems. In the 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO ’16).

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing
CUDA workloads using a detailed GPU simulator. In 2009 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS ’09).

Brad Benton. 2017. CCIX, GEN-Z, Open CAPI: OVERVIEW & COMPARISON.
13th Annual OpenFabrics Alliance Workshop. (Mar 2017).

A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi, H.
Zheng, and O. Mutlu. 2017. LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory. IEEE Computer Architecture Letters 16, 1 (Jan 2017).
Doug Burger, James R. Goodman, and Alain Kégi. 1996. Memory Bandwidth Lim-
itations of Future Microprocessors. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture (ISCA *96).

K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens. 2013. System
and circuit level power modeling of energy-efficient 3D-stacked wide I/O DRAMs.
In 2013 Design, Automation Test in Europe Conference Exhibition (DATE).

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC 09).

Hanjin Chu. 2013. AMD Heterogeneous Uniform Memory Access. AMD. (2013).
Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traffic Man-
agement: A Holistic Approach to Memory Placement on NUMA Systems. In
Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’13).

Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, Thn Kim, and
Gokhan Daglikoca. 2002. The Architecture of the DIVA Processing-in-memory
Chip. In Proceedings of the 16th International Conference on Supercomputing (ICS
02).

A. Farmahini-Farahani,]. H. Ahn, K. Morrow, and N. S. Kim. NDA: Near-DRAM
acceleration architecture leveraging commodity DRAM devices and standard
memory modules. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA ’15).

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow. In Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
07)

Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical Near-Data Pro-
cessing for In-Memory Analytics Frameworks. In Proceedings of the International
Conference on Parallel Architecture and Compilation (PACT ’15).

M. Gao and C. Kozyrakis. 2016. HRL: Efficient and flexible reconfigurable logic for
near-data processing. In the IEEE International Symposium on High Performance
Computer Architecture (HPCA ’16).

M. Gokhale, B. Holmes, and K. Iobst. 1995. Processing in memory: the Terasys
massively parallel PIM array. Computer 28, 4 (Apr 1995), 23-31.

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. 2012.
Auto-tuning a high-level language targeted to GPU codes. In Innovative Parallel
Computing (InPar).

Anthony Gutierrez, Michael Cieslak, Bharan Giridhar, Ronald G. Dreslinski,
Luis Ceze, and Trevor Mudge. 2014. Integrated 3D-stacked Server Designs
for Increasing Physical Density of Key-value Stores. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’14).

Mark Harris. 2013. Unified Memory in CUDA 6. GTC On-Demand, NVIDIA.
(2013).

Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving performance via mini-applications.
Sandia National Laboratories, Tech. Rep. SAND2009-5574 3 (2009).

Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler. 2016.
Transparent Offloading and Mapping (TOM): Enabling Programmer-transparent
Near-data Processing in GPU Systems. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA ’16).

SW. Keckler, WJ. Dally, B. Khailany, M. Garland, and D. Glasco. 2011. GPUs and
the Future of Parallel Computing. Micro, IEEE 31, 5 (Sept 2011), 7-17.

Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh

(28]

[29]

(30]

[31

[35

[36

[37

&
&,

[39

[40

[41

[42]

[43

[44

[49

Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Efficient Warp
Execution in Presence of Divergence with Collaborative Context Collection. In
Proceedings of the 48th International Symposium on Microarchitecture (MICRO’15).
Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. 2013. Memory-centric
System Interconnect Design with Hybrid Memory Cubes. In Proceedings of the
22nd International Conference on Parallel Architectures and Compilation Techniques
(PACT ’13).

D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S.
Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim,]. Lee, K. W. Park,
B. Chung, and S. Hong. 2014. A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test methods using
29nm process and TSV. In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC °14).

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling
Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13).

Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and
Memory Placement on NUMA Systems: Asymmetry Matters. In Proceedings of
the USENIX Conference on Usenix Annual Technical Conference (USENIX ATC’15).
Wen mei W. Hwu. 2012. GPU Computing GEMS Jade Edition. Morgan Kaufmann.
R. Nair, S.F. Antao, C. Bertolli, P. Bose, J.R. Brunheroto, T. Chen, C. Cher, C.H.A.
Costa, J. Doi, C. Evangelinos, B.M. Fleischer, TW. Fox, D.S. Gallo, L. Grinberg, J.A.
Gunnels, A.C. Jacob, P. Jacob, H.M. Jacobson, T. Karkhanis, C. Kim, J.H. Moreno,
JK. O’Brien, M. Ohmacht, Y. Park, D.A. Prener, B.S. Rosenburg, K.D. Ryu, O.
Sallenave, M.J. Serrano, P.D.M. Siegl, K. Sugavanam, and Z. Sura. 2015. Active
Memory Cube: A processing-in-memory architecture for exascale systems. IBM
Journal of Research and Development (2015).

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra,
Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das. 2016. Scheduling Techniques
for GPU Architectures with Processing-In-Memory Capabilities. In Proceedings of
the 2016 International Conference on Parallel Architectures and Compilation (PACT
’16).

J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally, and M. Horowitz.
2007. A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS. Solid-State Circuits, IEEE
Journal of 42, 12 (2007).

S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuk-
tosunoglu, A. Davis, and F. Li. 2014. NDC: Analyzing the impact of 3D-stacked
memory+logic devices on MapReduce workloads. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS ’14).
Minsoo Rhu and Mattan Erez. 2013. The Dual-path Execution Model for Efficient
GPU Control Flow. In Proceedings of the 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA ’13).

Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. 2013. A Locality-
aware Memory Hierarchy for Energy-efficient GPU Architectures. In Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO ’13)

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-Conscious
Wavefront Scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’12).

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-
aware Warp Scheduling. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’13).

Mark Shaw, Martin Goldstein, and Mark A. Shaw. 2016. Open CloudServer OCS
Blade Specification Version 2.1. Open Compute Project. (Feb 2016).

Young Hoon Son, O. Seongil, Hyunggyun Yang, Daejin Jung, Jung Ho Ahn, John
Kim, Jangwoo Kim, and Jae W. Lee. 2014. Microbank: Architecting Through-
silicon Interposer-based Main Memory Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’14).

J.A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. 2012. Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Computing. IMPACT
Technical Report, Center for Reliable and High-Performance Computing. (2012).
Thomas Vogelsang. 2010. Understanding the Energy Consumption of Dynamic
Random Access Memories. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO °10).

S. Wasson. 2015. AMD Radeon R9 Fury X Graphics Card Reviewed. (2015). http://
techreport.com/review/28513/amd-radeon-r9-fury-x-graphics-card-reviewed.
Joe Xie. 2016. NVIDIA RISC-V Evaluation Story. In Proceedings of the 4th RISC-V
workshop.

Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-oriented Pro-
grammable Processing in Memory. In Proceedings of the 23rd International Sym-
posium on High-performance Parallel and Distributed Computing (HPDC ’14).

T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler. 2016. Towards
high performance paged memory for GPUs. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA ’16).

http://techreport.com/review/28513/amd-radeon-r9-fury-x-graphics-card-reviewed
http://techreport.com/review/28513/amd-radeon-r9-fury-x-graphics-card-reviewed

	Abstract
	1 Introduction
	2 Proposed Architecture Overview
	3 Code Generation for NDP
	3.1 Offload Block Identification
	3.2 Offload Block Code Generation

	4 Near-Data Processing Model
	4.1 Partitioned Execution
	4.2 Cache Coherence
	4.3 Deadlock Prevention
	4.4 Bandwidth Saving for Divergent Memory Access
	4.5 NSU Design

	5 Evaluation Methodology
	6 Naive Implementation Result
	7 Improving Performance Through Dynamic Offloading Decision
	7.1 Impact of Static Offload Ratio
	7.2 Dynamic Offload Ratio
	7.3 Cache Locality-Aware Offload Decision
	7.4 Energy Reduction
	7.5 Hardware Overhead
	7.6 Performance Sensitivity to NSU Frequency

	8 Related Work
	8.1 Prior Work with Data Access Restriction
	8.2 Prior Work with Architecture-specific MMU/TLB

	9 Conclusion
	References

